#### Chapter 30: Reflection and Refraction Thursday November 17<sup>th</sup>

- V. IMPORTANT: Final exam will be in HCB103/316
  - There will be assigned seating (TBA)
- Check your exam scores online
- Still 50 unregistered *i*Clickers, some with excellent scores!
  - •Reflection and Refraction (Ch. 30)
    - •Review: wave reflection from an interface
    - Review wave transmission through an interface (refraction)
    - Snell's law
    - Total Internal reflection
    - Brewster's angle
    - Dispersion

Reading: up to page 540 in the text book (Ch. 30)



- There are a number of different ways to rationalize this, both in terms of the wave- and particle-like nature of light.
- The latter involves conservation of energy/momentum, i.e., just like a perfect elastic collision between a billiard board and the rail.

# **Review: Refractive index**

When a wave travels into a medium other than vacuum, the constants  $\varepsilon_0$  and  $\mu_0$  are modified by their permeabilities  $\kappa_e$  and  $\kappa_m$ , thus the speed of the electromagnetic wave is given by:

$$v = c_{\sqrt{\frac{1}{\kappa_e \kappa_m}}} = \frac{c}{n}$$

where  $n = (\kappa_e \kappa_m)^{1/2}$  is called the refractive index of the material.

Medium 1

Medium 2







### **Refraction and total internal reflection**



### **Refraction and total internal reflection**



# **Refraction and total internal reflection**





